БАКАЛАВРИАТ

БИОЛОГИЧЕСКАЯ ХИМИЯ

Под редакцией Н.И.КОВАЛЕВСКОЙ

УЧЕБНИК

Для студентов учреждений высшего профессионального образования

4-е издание, переработанное и дополненное

Москва Издательский центр «Академия» 2013

Авторы:

Ю. Б. Филиппович (гл. 1, 2, 4, 7, 9);
 Н. И. Ковалевская (введение, гл. 1 — 12, задания для самостоятельной работы);
 Г.А. Севастьянова (гл. 4, 7); С. М. Клунова (гл. 1, 2); Т.А. Егорова (гл. 9)

Рецензенты: д-р хим. наук, профессор *И. Г. Горичев*; канд. биол. наук, профессор *Г. И. Ушакова*

Биологическая химия: учеб. для студ. учреждений высш. проф. образования / [Ю.Б.Филиппович, Н.И.Ковалевская, Г.А.Севастьянова и др.]; под ред. Н.И.Ковалевской. — 4-е изд., перераб. и доп. — М.: Издательский центр «Академия», 2013. — 320 с. — (Сер. Бакалавриат).

ISBN 978-5-7695-8506-7

Учебник создан в соответствии с Федеральным государственным образовательным стандартом по направлениям подготовки бакалавров, предусматривающими изучение дисциплины «Биологическая химия».

Рассмотрены строение и свойства белков, ферментов, нуклеиновых кислот, углеводов, жиров, витаминов и коферментов. Изложены общие для всех организмов закономерности обмена веществ и энергии, их взаимосвязи и регуляции. Представлено большое количество иллюстраций. Предложены контрольные вопросы и задания для самостоятельной работы по основным темам курса биологической химии.

Для студентов учреждений высшего профессионального образования.

УДК 577.1(075.8) ББК 28.072я73

Оригинал-макет данного издания является собственностью Издательского центра «Академия», и его воспроизведение любым способом без согласия правообладателя запрещается

- © Коллектив авторов, 2005
- © Коллектив авторов, 2013, с изменениями
- © Образовательно-издательский центр «Академия», 2013
- ISBN 978-5-7695-8506-7
- © Оформление. Издательский центр «Академия», 2013

Представленный учебник подготовлен в соответствии с программой для бакалавриата биологических направлений вузов, включающей все основные разделы биологической химии. Рассмотрены строение и свойства белков, ферментов, нуклеиновых кислот, углеводов, жиров, витаминов и коферментов. Изложены общие для всех организмов закономерности обмена веществ и энергии, их взаимосвязи и разноуровневой регуляции. Большое внимание уделено рассмотрению роли клеточных и субклеточных структур в локализации и взаимодействии биохимических процессов в организме.

В учебнике много иллюстраций и схем для максимальной наглядности и доступности изучаемых базовых знаний по биологической химии. Авторы стремились дать современный количественный подход к вопросам биоэнергетики, физико-химических свойств биополимеров и ферментативной кинетики, не перегружая текст чрезмерной математизацией, стараясь компенсировать сложность понятий логической наглядностью и доступностью отобранного иллюстративного материала. Данный подход позволяет рекомендовать учебник не только студентам, но также учителям и учащимся старших классов специализированных в направлении биологии школ.

При рассмотрении строения и обмена углеводов и жиров авторы опираются на знания, полученные учащимися в курсе органической химии, которая предваряет курс биохимии в вузах. Перед изучением вопросов динамической биохимии представлены проблемы биоэнергетики, роль в питании органических и неорганических компонентов пищи, в том числе макро- и микроэлементов. В разделах динамической биохимии представлены процессы распада и синтеза белков, нуклеиновых кислот, углеводов и жиров, а также входящих в их состав аминокислот, азотистых оснований, моносахаридов, жирных кислот.

В заключительной части учебника предлагаются задания для самостоятельной работы студентов по основным темам курса.

Биологическая химия — наука о химическом составе живой материи и химических процессах, лежащих в основе жизненных явлений.

Как самостоятельная научная дисциплина биохимия оформилась во второй половине XIX в. Выделение биохимии в отдельную науку стало возможным благодаря значительным успехам органической химии в изучении многочисленных природных соединений и достижениям физиологии в исследовании процессов, протекающих в растительных и животных организмах.

Особенно быстрыми темпами биохимия стала развиваться в последние десятилетия. Этому способствует применение в биохимических исследованиях новых скоростных и высокоразрешающих методов анализа: электронной микроскопии, рентгеноструктурного анализа, метода меченых атомов, хроматографии, электрофореза и др. На основе биохимии в XX в. возникли новые перспективные и быстро развивающиеся направления — молекулярная биология и генетическая инженерия, бионеорганическая и биоорганическая химия, биотехнология, экологическая биохимия и др.

Провести четкие границы между биохимией и смежными науками, такими как молекулярная биология, генная инженерия, достаточно сложно, и чаще всего эти границы весьма неопределенны. Перекрывание этих областей знаний не случайно, поскольку у них общие объекты исследований: нуклеиновые кислоты, белки, клеточные ядра, митохондрии, рибосомы, т.е. различными являются лишь подходы и методы изучения одних и тех же объектов.

В зависимости от подхода к изучению живых объектов в биохимии выделяют следующие направления исследований.

Во-первых, это статическая биохимия, предметом изучения которой является исследование химического качественного и количественного состава живых организмов.

Во вторых, это **динамическая биохимия**, предмет исследования которой — превращение химических соединений на путях распада и синтеза в процессах обмена веществ и энергии.

В третьих, это функциональная биохимия, предметом изучения которой является установление связи между химическим строением и определенными функциями живых организмов в процессе жизнедеятельности.

Первые два направления — статическая и динамическая биохимия — объединяются в рамках общей (классической) биохимии. Функциональная биохимия представляет собой крупное направление, которое часто сливается с медицинской биохимией и развивается в сторону более узкой специализации.

На современном этапе своего успешного развития биохимия является основой для решения многих вопросов в биологии, медицине, животноводстве, растениеводстве, микробиологии и других областях человеческого знания и практической деятельности.

БЕ КИ

Белки — это высокомолекулярные азотсодержащие органические соединения, характеризующиеся строго определенным составом и распадающиеся до аминокислот при гидролизе.

Общая формула белка:

$$H_2N$$
-CH-C- $\begin{bmatrix} NH$ -CH-C- $\end{bmatrix} NH$ -CH-COOH $\begin{bmatrix} NH$ $\begin{bmatrix} NH \\ R \end{bmatrix} \end{bmatrix} \begin{bmatrix} NH$ $\begin{bmatrix} NH \\ R \end{bmatrix} \end{bmatrix} \begin{bmatrix} NH$

Элементарный состав (%) белков следующий:

углерод......
$$50-55$$
 кислород...... $21-24$ водород...... $6,5-7,3$ сера $0-24$ азот..... $15-18$ зола $0-0,5$

Впервые белок (клейковина) был выделен Я. Беккари из пшеничной муки в 1728 г. К настоящему времени из природных источников выделены и изучены тысячи различных белков.

Белки — важнейшие незаменимые компоненты живого. Белковые тела играют решающую роль и в построении живой материи, и в осуществлении всех процессов жизнедеятельности. «Повсюду, где мы встречаем жизнь, мы находим, что она связана с каким-либо белковым телом, и повсюду, где мы встречаем какое-либо белковое тело, которое не находится в процессе разложения, мы без исключения встречаем и явления жизни»*.

Белки — главные носители жизни благодаря тому, что они обладают рядом особенностей, к числу наиболее важных из которых относятся: неисчерпаемое многообразие структуры и вместе с тем ее высокая видовая уникальность; широкий диапазон физических и химических превращений; способность в ответ на внешнее воздействие обратимо и закономерно изменять конфигурацию молекулы; склонность к образованию надмолекулярных структур, комплексов с другими химическими соединениями; наличие биологической активности — гормональной, ферментативной, патогенной и др.

На долю белков приходится основная масса сухого вещества (55—85%) активно растущей клетки. В самой маленькой и просто устро-

^{*} Энгельс Φ . Анти-Дюринг. — М.: Госполитиздат, 1945. — С. 77.

енной бактериальной клетке обнаружено более 2 000 различных белков, выполняющих самые разнообразные функции.

1.1. Методы выделения и фракционирования белков

Для изучения структуры и свойств белков необходимо выделить их из биологических объектов. Это трудная задача, так как белки очень легко теряют свои природные, так называемые нативные свойства (растворимость, биологическую активность и т.п.), и переходят в денатурированное (связанное с потерей биологической активности) состояние. Чтобы избежать денатурации белка в процессе его выделения, все операции проводят при достаточно низкой (не выше +5 °C) температуре, исключая жесткое воздействие химических реагентов.

Выделение белков начинают с тончайшего измельчения (гомогенизации) ткани вплоть до разрушения клеточных стенок. Для этого используют специальные шаровые мельницы, различного типа гомогенизаторы, проводят растирание с кварцевым песком. Хорошие результаты дают методы разрушения клеточных оболочек путем попеременного замораживания и размораживания ткани или обработки ферментными препаратами (лизоцимом), а также методы продавливания ткани через мельчайшие отверстия (пресс-метод). После тонкого измельчения материала переходят к следующему этапу — экстракции белков. Белки извлекают чаще всего водой, 8—10%-ми растворами различных солей, разнообразными буферными системами (фосфатными, боратными, цитратными и др.), смесями органических реагентов (глицерина, одноатомных спиртов, уксусной кислоты, ацетона, фенола и др.) с водой.

Для очистки белков от низкомолекулярных примесей (солей и др.) используют диализ (рис. 1.1). Метод основан на том, что молекулы белка из-за своих размеров не могут проходить через полупроницаемые мембраны (целлофановые и др.), в то время как низкомолекулярные вещества равномерно распределяются между объемом, ограниченным мембраной, и окружающим раствором (см. верхнюю часть рис. 1.1). После многократной замены внешнего раствора состав среды в диализном мешочке (концентрация солей и величина рН) становится тем же, что и в окружающем растворе.

После экстракции и очистки смеси белков из биологического материала проводят разделение смеси на индивидуальные белки. Фракционирование белков ведут разными способами: с использованием солей, органических растворителей, электрофоретически, хроматографически, методом молекулярных сит и пр.

Метод фракционирования белков солевыми растворами называется высаливанием. Он основан на том, что каждый индивидуаль-

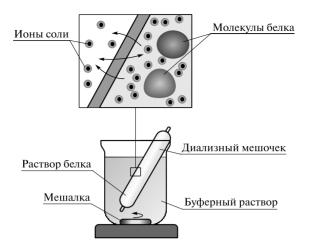


Рис. 1.1. Очистка белков методом диализа

ный белок разделяемой смеси осаждается из нее при определенной концентрации той или иной соли. Растворимость белков зависит от концентрации солей (ионной силы). В дистиллированной воде белки обычно растворяются плохо, однако их растворимость возрастает при добавлении соли (до $8-15\,\%$). При этом все большее количество гидратированных неорганических ионов (рис. 1.2) связывается с поверхностью белка, уменьшая тем самым степень его агрегации с другими белковыми молекулами. При повышении концентрации соли (свыше 50%) молекулы белков лишаются гидратных оболочек, что приводит к агрегации и выпадению молекул белка в осадок в резуль-

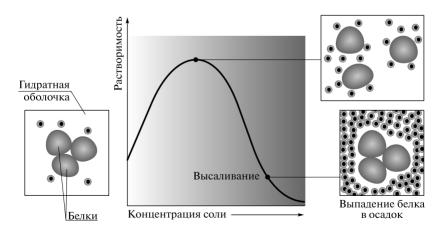


Рис. 1.2. Разделение белков методом высаливания

тате высаливания. Используя различие в растворимости белков в солевых растворах разной ионной силы, можно с помощью сульфата аммония и других солей фракционировать смеси белков, например, альбуминов и глобулинов сыворотки крови.

Для фракционирования белков широко применяют также водные растворы метилового и этилового спиртов, ацетон и другие органические растворители.

Метод электрофореза, используемый для более тонкого фракционирования белков, основан на способности различных белков с разной скоростью перемещаться в растворе, по влажной фильтровальной бумаге или в другой твердой среде (крахмале, агар-агаре, полиакриламиде) под действием постоянного электрического тока. Скорость передвижения белковых молекул определенного вида к аноду или катоду зависит от их электрического заряда, молекулярной мас-

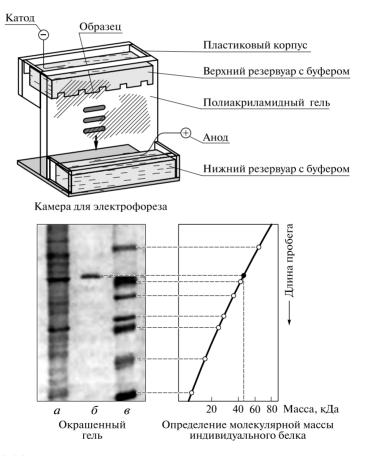


Рис. 1.3. Метод электрофореза для разделения смеси белков

сы и их формы, ионной силы, показателя рН и состава буферного раствора, а также приложенного потенциала (рис. 1.3).

Как показано на рисунке, электрофорез экстракта клеточных белков проводят в камере на тонкой пластине полиакриламидного геля, погруженной в буфер. После завершения электрофореза и фиксации зоны белков выявляют с помощью красителя. На электрофореграмме представлен исходный экстракт (a), содержащий до сотни клеточных белков, рядом (δ) — одна зона выделенного из экстракта индивидуального гомогенного белка, на третьей дорожке (ϵ) — контрольная смесь белков-маркеров с известными молекулярными массами — для определения в данном случае молекулярной массы индивидуального белка в полученном экстракте.

Хроматографический метод разделения белковых смесей или очистки белка от примесей заключается в пропускании фракционируемой смеси белков через хроматографическую колонку, заполненную адсорбентом (крахмалом, целлюлозой и ее производными, ионообменными смолами и т.д.). Для элюции адсорбировавшихся белков используют солевые растворы различной концентрации. Выход индивидуальных белков после фракционирования контролируют, проводя цветные реакции или измеряя поглощение белковых растворов в ультрафиолетовой области спектра.

Фракционирование белков методом «молекулярных сит» (гельфильтрации) основано на различной скорости перемещения белковых молекул через колонку, заполненную специальным сетчатым полимером (сефадексом). В зависимости от молекулярной массы белков внутренний объем ячеек сефадекса в той или иной степени доступен для белковых молекул. Крупные молекулы белков, не способные проникнуть внутрь ячеек, выносятся из колонки элюентом первыми, а мелкие молекулы белка, проникшие внутрь ячеек, задержи-

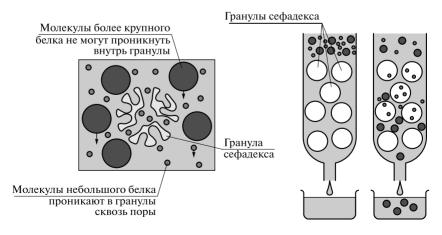


Рис. 1.4. Фракционирование белков методом гельфильтрации

ваются в них и выходят из колонки вслед за первыми в порядке уменьшения их молекулярной массы. Поэтому сефадекс называют также «антиситом» (рис. 1.4).

Получение индивидуального (гомогенного) белка из сложной природной смеси представляет собой трудную задачу, реализуемую в каждом конкретном случае по определенной схеме, включающей разную комбинацию и последовательность перечисленных выше методов.

1.2. Молекулярная масса белков

Молекулярная масса белков составляет десятки — сотни тысяч дальтон* и более (табл. 1.1).

Молекулярную массу белка определяют различными методами. Из физических методов наиболее часто используют метод ультрацентрифугирования, суть которого заключается в измерении скорости оседания молекул белков в ультрацентрифуге, где при вращении ротора развивается центробежное ускорение, превышающее ускорение силы тяжести в 100 000 и более раз. По скорости оседания рассчитывают молекулярную массу белка (подробнее о методе см. в гл. 5). Электрофоретический метод основан на зависимости длины пробега

Таблица 1.1. Значения молекулярной массы, степени асимметрии молекул и изоэлектрической точки некоторых белков

Белок	Молекулярная масса, Да	Степень асимметрии молекул	Изоэлектрическая точка
Миоглобин кашалота	17 600	3,0	7,0
Пепсин	35 000	4,0	1,1
Альбумин яичный	46 000	4,4	4,6
Гемоглобин лошади	68 000	4,3	6,6
γ-Глобулин человека	160 000	6,0	7,3
Каталаза	250 000	5,8	6,7
Уреаза	483 000	4,8	4,9
Гемоцианин улитки	6 600 000	4,8	4,7

^{*} Дальтон (Да) — атомная единица массы, выраженная в водородных единицах (в отличие от принятой в настоящее время углеродной единицы).

от заряда и молекулярной массы белковых молекул при проведении электрофореза в полиакриламидном или других гелях в присутствии белков-маркеров с известной молекулярной массой (см. рис. 1.3).

1.3. Форма белковых молекул

С помощью гидродинамических и оптических методов, рентгеноструктурного анализа и электронной микроскопии выяснено, что в большинстве случаев белковые частицы имеют вытянутую форму и построены асимметрично. Степень асимметрии выражают отношением длинной оси частицы b к ее короткой оси a. Данные о степени асимметрии b/a молекул некоторых белков приведены в табл. 1.1. Белки, степень асимметрии молекул которых равна 1 (молекулы сферической формы), встречаются довольно редко. Чаще всего степень асимметрии изменяется в интервале от 3 до 6 (молекулы эллипсоидной или палочкообразной формы). В некоторых случаях степень асимметрии достигает 80 или 200 и более (молекулы нитевидной формы). В целом белковые молекулы асимметричны во всех трех измерениях: длина белковых молекул средней молекулярной массы достигает нескольких десятков нанометров*, а толщина — всего нескольких нанометров.

Между формой белковых молекул и их функциями существует тесная взаимосвязь. Это ярко выражено, например, у крайне асимметрично построенных молекул мышечных белков (актина, миозина) и белка волос кератина (рис. 1.27 и 1.30).

1.4. Аминокислотный состав белков

Прежде чем исследовать химический состав белковых тел, проводят их гидролиз. Для этого белок нагревают с растворами кислот, щелочей или инкубируют с иммобилизованными (прикрепленными к носителю) ферментами. Показано, что конечными продуктами гидролиза белков являются аминокислоты. Следовательно, аминокислоты являются структурными элементами белков. В настоящее время изучены качественный и количественный состав аминокислот нескольких сотен белков. Фракционирование смесей аминокислот, полученных в результате гидролиза белков, осуществляют методом ионообменной хроматографии с помощью автоматических анализаторов аминокислот, в которых количественное содержание аминокислот устанавливается практически без участия исследователя в течение 1,0-1,5 ч.

Найденные в белках аминокислоты принято делить на две группы: постоянно встречающиеся и иногда встречающиеся в белках.

^{* 1} нанометр (нм) = 10^{-9} м.

Постоянно встречаются в белках 18 аминокислот; их названия, формулы и сокращенные обозначения приведены в табл. 1.2. Помимо 18 аминокислот в состав белков входят два амида: амид аспарагиновой кислоты — аспарагин (Асн) и амид глутаминовой кислоты — глутамин (Глн):

В белках представлены α -аминокислоты (за исключением пролина — гетероциклической иминокислоты). Все белковые аминокислоты (кроме глицина) проявляют оптическую активность и относятся к L-ряду. Кроме приведенных в табл. 1.2 обязательных 18 аминокислот и двух амидов в белках встречаются также более редкие: оксипролин (оксипирролидин-2-карбоновая кислота), орнитин (α , δ -диаминовалериановая кислота), α -аминоизомасляная кислота, селеноцисте-ин (содержит селен вместо серы) и др.

Химические свойства α -аминокислот, входящих в состав белков, определяются природой их радикалов. Реакции солеобразования протекают по NH_2 - и COOH-группам, реакции окисления—восстановления — по SH- и S—S-группам, реакции алкилирования и ацилирования — по NH_2 -, OH- и COOH-группам, реакции фосфорилирования — по OH-группам и т. п.

Физические свойства аминокислот также весьма разнообразны. Они определяются прежде всего длиной и объемом радикалов. От длины, объема и взаиморасположения радикалов аминокислот, составляющих белковую молекулу, зависит объем, форма и «рельеф» поверхности белковой частицы. Отсутствие бокового радикала у глицина позволяет ему увеличивать подвижность полипептидной цепи белка и приводит к его изгибам.

Радикалы аланина, валина, лейцина, изолейцина, фенилаланина и триптофана неполярные, а остальных аминокислот — полярные. Это определяет разную степень растворимости белков в различных растворителях. Радикал гистидина обратимо ионизируется (протонируется) при физиологических значениях рН, благодаря чему он участвует в кислотно-основном катализе и присутствует в активных центрах многих ферментов, выполняя роль так называемого «протонного насоса»:

Таблица 1.2. Аминокислоты, входящие в состав белков

Аминокислота	Формула	Обозна- чение
Глицин (аминоук- сусная кислота)	CH ₂ —COOH NH ₂	Гли
Аланин (α-аминопро- пионовая кислота)	CH ₃ —CH—COOH NH ₂	Ала
Валин (α-аминоизова- лериановая кислота)	H ₃ C CH—CH—COOH NH ₂	Вал
Лейцин (α-аминоизокап- роновая кислота)	H ₃ C CH-CH ₂ -CH-COOH NH ₂	Лей
Изолейцин (α-амино-β-ме- тилвалериановая кислота)	CH ₃ -CH ₂ -CH-CH-COOH CH ₃ NH ₂	Иле
Аспарагиновая (аминоянтарная) кислота	HOOC-CH ₂ -CH-COOH NH ₂	Асп
Глутаминовая (α-аминоглута- ровая) кислота	HOOC-CH ₂ -CH ₂ -CH-COOH	Глу
Серин (α-амино-β-окси- пропионовая кислота)	HO-CH ₂ -CH-COOH NH ₂	Сер
Треонин (α-амино-β-окси- масляная кислота)	CH₃−CH−CH−COOH 	Tpe
Цистеин (α-амино-β-тиол- пропионовая кислота)	HS-CH ₂ -CH-COOH NH ₂	Цис

Аминокислота	Формула	Обозна- чение
Метионин (α-амино-γ-ме- тилтиомасляная кислота)	CH ₃ -S-CH ₂ -CH ₂ -CH-COOH NH ₂	Мет
Аргинин (α-амино-β-гу-анидинвалериано-вая кислота)	H ₂ N-C-NH-CH ₂ -CH ₂ -CH ₂ -CH-COOH NH NH ₂	Арг
Лизин (α,ε-ди- аминокапроновая кислота)	H ₂ N-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH-COOH NH ₂	Лиз
Гистидин (α-амино-β-имидазолилпро-пионовая кислота)	N——C—CH ₂ —CH—COOH 	Гис
Пролин (пирролидин-α- карбоновая кислота)	H ₂ C—CH ₂ CH—COOH N H	Про
Фенилаланин (α-амино-β-фе- нилпропионовая кислота)	HC—CH HC—CH—CH—COOH HC=CH NH ₂	Фен
Тирозин (α-амино-β-па- раоксифенилпро- пионовая кислота)	HC—CH HO−С С—СН ₂ —СН−СООН HC=CH NH ₂	Тир
Триптофан (α-амино-β-ин-долилпропионо-вая кислота)	HC C C—C—CH ₂ —CH—COOH	Три

Таким образом, разнообразие химических и физических свойств радикалов аминокислот определяет полифункциональность и специфические особенности белковых тел. Это выделяет белки из ряда других природных биополимеров и обеспечивает им роль материальной основы жизненных процессов.

1.5. Пептиды

Важным химическим свойством α -аминокислот, обусловленным присутствием в молекуле аминной и карбоксильной групп, является способность в определенных условиях образовывать пептиды. Этот химический процесс протекает по типу реакции поликонденсации:

В результате реакции поликонденсации аминокислот можно получить соединения, составленные из многих аминокислотных остатков с очень высокой молекулярной массой. Такие соединения назы-

вают *полипептидами*, группировки
$${}^{\circ}$$
 С $-$ N $\stackrel{\circ}{\longrightarrow}$ В них — *пептид-*

Пептиды могут быть получены также при неполном гидролизе белков. Поскольку аминокислоты в составе пептидов находятся в форме ацилов, то в названии пептида им придают характерное для ацилов окончание «ил». Название концевой аминокислоты со свободной карбоксильной группой оставляют без изменений. Название пептида начинают с аминокислоты, сохранившей свободную α -аминогруппу.