Издательский центр
«Академия»
Вход
Регистрация
На главную
Номер страницы:
Содержание
Предисловие
Глава 1. О численном анализе
1.1. Немного истории
1.1.1. Развитие численных методов
1.1.2. Теории и модели
1.2. Математическое моделирование
1.2.1. Математическая модель
1.2.2. Модель — алгоритм — программа
1.3. Источники погрешности
1.3.1. Величины и нормы
1.3.2. Погрешность модели
1.3.3. Неустранимая погрешность
1.3.4. Погрешность метода
1.3.5. Погрешность округления
1.3.6. Корректность задачи
Глава 2. Системы алгебраических уравнений
2.1. Линейные системы
2.1.1. Задачи линейной алгебры
2.1.2. Метод Гаусса
2.1.3. Определитель и обратная матрица
2.1.4. Прочие методы
2.1.5. Плохо обусловленные системы
2.1.6. Переобусловленные системы
2.2. Нелинейное уравнение
2.2.1. Дихотомия
2.2.2. Метод Ньютона
2.2.3. Обобщенный метод Ньютона
2.2.4. Прочие методы
2.2.5. Удаление корней
2.3. Системы нелинейных уравнений
2.3.1. Метод Ньютона
2.3.2. Обобщенный метод Ньютона
Глава 3. Численное интегрирование
3.1. Квадратурные формулы
3.1.1. Интегральная сумма
3.1.2. Формула средних
3.1.3. Формула трапеций
3.1.4. Формула Симпсона
3.1.5. Формулы Эйлера — Маклорена
3.1.6. Формулы Гаусса — Кристоффеля
3.1.7. Недостаточно гладкие функции
3.2. Метод сгущения сеток
3.2.1. Однократное сгущение
3.2.2. Рекуррентное уточнение
3.2.3. Квазиравномерные сетки
3.2.4. Метод Эйткена
3.3. Кубатурные формулы
3.3.1. Метод средних
3.3.2. Произведение квадратурных формул
3.3.3. Статистические методы
Глава 4. Интерполяция
4.1. Интерполяционный многочлен
4.1.1. Задачи интерполяции
4.1.2. Многочлен Ньютона
4.1.3. Погрешность
4.1.4. Обратная интерполяция
4.1.5. Эрмитова интерполяция
4.1.6. Многомерная интерполяция
4.2. Сплайн-интерполяция
4.2.1. Историческая справка
4.2.2. Кубический сплайн
4.2.3. Обобщения
4.3. Нелинейная интерполяция
4.3.1. Выравнивание
4.3.2. Рациональная интерполяция
Глава 5. Среднеквадратичная аппроксимация
5.1. Общий случай
5.1.1. Выборнор мы
5.1.2. Аппроксимация обобщенным многочленом
5.1.3. Неортогональные базисы
5.1.4. Ортогональные системы
5.1.5. Метод наименьших квадратов
5.2. Тригонометрический р яд Фурье
5.2.1. Общие формулы
5.2.2. Сходимость
5.2.3. Вычисление коэффициентов
5.2.4. О равномерных приближениях
5.3. Ряды по многочленам Чебышева
5.3.1. Многочлены Tm(x). Вычисление
5.3.2. Разложение по Tm(x
5.4. Метод двойного периода
5.4.1. Исключение разрывов
5.4.2. Двойной период
5.4.3. Наилучшее приближение
5.4.4. Вычисление скалярных произведений
5.5. Аппроксимация сплайнами
5.5.1. B-сплайны
5.5.2. Среднеквадратичная аппроксимация
5.5.3. Конечные элементы
5.6. Аппроксимация кривых
5.6.1. Параметризация кривой
5.6.2. Хорда
5.6.3. Окружность
5.6.4. Аппроксимация
5.6.5. Ротационная инвариантность
Глава 6. Численное дифференцирование
6.1. Производная многочлена Ньютона
6.1.1. Общие формулы
6.1.2. Простейшие случаи
6.1.3. Неограниченная область
6.1.4. Сгущение сеток
6.1.5. Старшие производные
6.2. Дифференцирование иных аппроксимаций
6.2.1. Интерполяционный сплайн
6.2.2. Метод выравнивания
6.2.3. Среднеквадратичное приближение
6.3. Некорректность численного дифференцирования
6.3.1. Дифференцирование интерполяционного многочлена
6.3.2. Дифференцирование рядов
Глава 7. Спектр матрицы
7.1. Преобразование подобия
7.1.1. Теория
7.1.2. Метод отражений
7.1.3. Другие методы
7.2. Вычисление спектра
7.2.1. Частичная проблема
7.2.2. Обобщенная проблема
7.2.3. Полная проблема
Глава 8. Задачи минимизации
8.1. Одномерный минимум
8.1.1. Золотое сечение
8.1.2. Метод Ньютона
8.1.3. Случай многих экстремумов
8.2. Многомерный минимум
8.2.1. Рельеф функции
8.2.2. Обобщенный метод Ньютона
8.2.3. Многоэкстремальность
8.3. Решение сеточных уравнений
8.3.1. Градиентные спуски
8.3.2. Наискорейший спуск
8.3.3. Минимальные невязки
8.3.4. Усеченный спуск
8.3.5. Сопряженные гр адиенты
8.3.6. Нелинейность
8.4. Задачи с ограничениями
8.4.1. Наложение связей
8.4.2. Ограниченная область
8.4.3. Общий случай
8.5. Минимизация функционала
8.5.1. Прикладные проблемы
8.5.2. Сеточный метод
8.5.3. Метод Ритца
8.5.4. Конечные элементы
8.5.5. Пробные функции
Список литературы
Численные методы: В 2 кн. Кн. 1 Численный анализ
Демонстрационный фрагмент!
Для приобретения печатной книги или чтения онлайн обратитесь к менеджеру.